skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Franco, Danielle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundUsing simulations in science instruction can help make abstract topics more concrete and boost students' understanding. AimsThe current research examined whether using a simulation as an exploratory learning activity before an accompanying lecture has additional learning and motivational benefits compared to a more common lecture‐then‐simulation approach. SamplesParticipants (Experiment 1,N = 168; Experiment 2,N = 357) were undergraduate students in several sections of a first‐year chemistry course. MethodsStudents were randomly assigned to explore a simulation on atomic structure either before a lecture (explore‐first condition) or after the lecture (instruct‐first condition). In Experiment 1, the simulation activity time was limited (15 min) and the activity varied in whether self‐explanation (‘why’) prompts were included. In Experiment 2, the activity time was lengthened (20 min), and only ‘why’ prompts were used. After the activity and lecture, students completed a survey and posttest. ResultsIn Experiment 1, students in the explore‐first condition scored lower on posttest conceptual knowledge scores and reported lower curiosity compared to students in the instruct‐first condition. Scores for basic facts and transfer knowledge, and self‐reported situational interest, self‐efficacy, and competence, were equal between conditions. No effects of prompt condition were found. In Experiment 2, with longer activity time, the results reversed. Students in the explore‐first condition scored equally on basic facts and higher on conceptual knowledge and transfer measures, while also reporting higher curiosity, situational interest, self‐efficacy, competence, and cognitive engagement. ConclusionWhen properly designed, placing simulations before—rather than after—lecture can deepen learning, motivation, and competence. 
    more » « less
  2. This study tested whether exploring with simulations before instruction offers the conceptual benefits of “productive failure,” compared to a more traditional lecture-then-practice method. Undergraduate students (N=218) in introductory chemistry courses completed an activity using an online simulation about atomic structure. Students either completed the simulation activity before (explore-first condition) or after (instruct-first condition) a lecture on the topic. Students in both conditions scored equally on an assessment of basic facts taught in the instruction. However, students in the explore-first condition scored significantly higher on assessments of conceptual understanding and transfer to a new concept, compared to students in the instruct-first condition. Students in the explore-first condition also reported experiencing greater competence and curiosity during the learning activities. A guided simulation activity prior to instruction can have both motivational benefits and deepen students’ understanding. 
    more » « less